If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16^2+x^2=22^2
We move all terms to the left:
16^2+x^2-(22^2)=0
We add all the numbers together, and all the variables
x^2-228=0
a = 1; b = 0; c = -228;
Δ = b2-4ac
Δ = 02-4·1·(-228)
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{57}}{2*1}=\frac{0-4\sqrt{57}}{2} =-\frac{4\sqrt{57}}{2} =-2\sqrt{57} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{57}}{2*1}=\frac{0+4\sqrt{57}}{2} =\frac{4\sqrt{57}}{2} =2\sqrt{57} $
| -159-13x=145+3x | | 5g=5g+5 | | 54x-4.75=2.50 | | −2(3y+5)=−4 | | −2(3y+5)=−4, | | -6+8m=-3+8m | | 5.75x+8=6.2-10 | | 2c-7c+8=17 | | -2(x-3)=-24 | | 16(4-3m)=96(m-2+1) | | -4h=-6+2h | | 49x-19=275 | | 5/8=3/4b−7/12 | | -10+7x=2x+10 | | 4(2x-5)-6(2x/3)=6+9(2x/3)+(2x-5) | | -3x+10=4x+45 | | 7x+8-9=12 | | -41=-6b | | -8g-8=10+g | | r=-32r–9–5 | | m6+75=180 | | -7y=7-6y | | 11x-1=14x+6 | | 8x+9−4x=25 | | 11x+-1=36 | | 6(-6x-5)=78 | | -8x-10=10-10x | | (4x+6)+5x+90+113=504 | | 6x=6x+14 | | n+7=-3+2n | | --10x^2(6-2x(6+1=0 | | 4=p+-19 |